# most_fields 策略 cross-fields 搜索弊端

cross-fields (跨字段)搜索:一个唯一标识,跨了多个 field。比如一个人,标识,是姓名; 一个建筑,它的标识是地址。姓名可以散落在多个 field 中,比如 first_name 和 last_name 中, 地址可以散落在 country、province、city中。

跨多个 field 搜索一个标识,比如搜索一个人名,或者一个地址,就是 cross-fields 搜索

初步来说,如果要实现,可能用 most_fields 比较合适。因为 best_fields 是优先搜索单个 field 最匹配的结果, cross-fields 本身就不是一个 field 的问题了。

增加字段数据

POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"author_first_name" : "Peter", "author_last_name" : "Smith"} }
{ "update": { "_id": "2"} }
{ "doc" : {"author_first_name" : "Smith", "author_last_name" : "Williams"} }
{ "update": { "_id": "3"} }
{ "doc" : {"author_first_name" : "Jack", "author_last_name" : "Ma"} }
{ "update": { "_id": "4"} }
{ "doc" : {"author_first_name" : "Robbin", "author_last_name" : "Li"} }
{ "update": { "_id": "5"} }
{ "doc" : {"author_first_name" : "Tonny", "author_last_name" : "Peter Smith"} }
1
2
3
4
5
6
7
8
9
10
11

查询

GET /forum/article/_search
{
  "query": {
    "multi_match": {
      "query":       "Peter Smith",
      "type":        "most_fields",
      "fields":      [ "author_first_name", "author_last_name" ]
    }
  }
}
1
2
3
4
5
6
7
8
9
10

响应结果

{
  "took": 118,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0.6931472,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 0.6931472,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language",
          "sub_title": "learned a lot of course",
          "author_first_name": "Smith",
          "author_last_name": "Williams"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "1",
        "_score": 0.5753642,
        "_source": {
          "articleID": "XHDK-A-1293-#fJ3",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-01",
          "tag": [
            "java",
            "hadoop"
          ],
          "tag_cnt": 2,
          "view_cnt": 30,
          "title": "this is java and elasticsearch blog",
          "content": "i like to write best elasticsearch article",
          "sub_title": "learning more courses",
          "author_first_name": "Peter",
          "author_last_name": "Smith"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 0.51623213,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2019-01-28",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith"
        }
      }
    ]
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

会发现 id=5 的 "author_last_name": "Peter Smith" 居然是排在最后面的, 我们想要的结果应该就是 id=5 这条数据了,造成这个结果的原因如下:

  • 只是找到尽可能多的 field 匹配的 doc,而不是某个 field 完全匹配的 doc

  • most_fields 没办法用 minimum_should_match 去掉长尾数据,就是匹配的特别少的结果

  • TF/IDF算法,

    比如 Peter Smith 和 Smith Williams,搜索 Peter Smith 的时候,由于 first_name 中很少有 Smith 的, 所以 query 在所有 document 中的频率很低,得到的分数很高,可能 Smith Williams 反而会排在 Peter Smith 前面

    注意:该算法在本教程中有时候的解释并不是完全正确,只大概是这样