# 065. 纯手敲 WordCount 程序
# 构建项目
storm-helloword/build.gradle
dependencies {
compile 'org.apache.storm:storm-core:1.1.0'
compile 'commons-collections:commons-collections:3.2.1'
}
// 因为需要打包 jar 独立运行,所以需要配置打包第三方依赖
// 注意 不要写成 boot 项目,否则就只能打成 bootjar 了
jar {
manifest {
attributes(
"Manifest-Version": 1.0,
"Main-Class": "cn.mrcode.cachepdp.storm.helloword.WordCountTopology")
}
from { configurations.compile.collect { it.isDirectory() ? it : zipTree(it) } }
into('assets') {
from 'assets'
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 编写代码
package cn.mrcode.cachepdp.storm.helloword;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;
import java.util.concurrent.TimeUnit;
import java.util.logging.Logger;
/**
* <pre>
* 需求:统计一些句子中单词出现的次数
* </pre>
*
* @author : zhuqiang
* @date : 2019/5/19 13:56
*/
public class WordCountTopology {
/**
* 定义一个数据源;这里直接伪造一个假数据
*/
public static class RandomSentenceSpout extends BaseRichSpout {
private static Logger logger = Logger.getLogger(RandomSentenceSpout.class.getName());
private Random random;
private SpoutOutputCollector collector;
private String[] sentences;
/**
* <pre>
* 对 spout 进行初始化工作
* 比如:创建一个线程池、创建一个数据库连接、构造一个 httpclient
* </pre>
*
* @param collector 数据写出对象
*/
@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
random = new Random();
this.collector = collector;
sentences = new String[]{"the cow jumped over the moon",
"an apple a day keeps the doctor away",
"four score and seven years ago",
"snow white and the seven dwarfs",
"i am at two with nature"};
logger.info("RandomSentenceSpout open");
}
/**
* <pre>
* 本类(Spout)最终会运行在 task 中,某个 worker 进程的某个 executor 线程内部的某个 task 中
* 该 task 会负责无限循环调用 nextTuple 方法
* 就可以达到不断的发射最新的数据,形成一个数据流
* </pre>
*/
@Override
public void nextTuple() {
Utils.sleep(2000);
String sentence = this.sentences[random.nextInt(this.sentences.length)];
System.err.println("RandomSentenceSpout sentence:" + sentence);
collector.emit(new Values(sentence));
}
/**
* <pre>
* 定义发射出去的每个 tuple 中的每个 field 的名称是什么?
* 这里只有一个值,只需要写一个字段名称
* </pre>
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("sentence"));
}
}
/**
* <pre>
* 定义一个 bolt ,用于对数据的加工,
* 这里拆分接收到的句子,拆分成一个一个的单词
* </pre>
*/
public static class SplitSentence extends BaseRichBolt {
private OutputCollector collector;
/**
* 该类初始化方法,这里可以拿到发射器
*/
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}
/**
* 每接收到一条数据,就会调用该方法,进行加工处理
*/
@Override
public void execute(Tuple input) {
String sentence = input.getStringByField("sentence");
for (String word : sentence.split(" ")) {
// 拆分成一个一个单词之后,再发射出去
collector.emit(new Values(word));
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// 定义发数据的字段名称
declarer.declare(new Fields("word"));
}
}
/**
* 在定义一个 bolt ,用于对单词的统计
*/
public static class WordCount extends BaseRichBolt {
private OutputCollector collector;
/**
* 用来存储每个单词的统计数量
*/
private Map<String, Integer> counts;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
this.counts = new HashMap<>();
}
@Override
public void execute(Tuple input) {
String word = input.getStringByField("word");
Integer count = counts.get(word);
if (count == null) {
count = 1;
counts.put(word, count);
}
counts.put(word, ++count);
System.err.println(Thread.currentThread().getName() + "WordCount word:" + word + ", count :" + count);
collector.emit(new Values(word, count));
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("wordk", "count"));
}
}
public static void main(String[] args) throws InvalidTopologyException, AuthorizationException, AlreadyAliveException, InterruptedException {
// 构建拓扑,也就是手动定义业务流程
// 其他的提交到 storm 集群后,由 storm 去调度在哪些机器上启动你所定义的 拓扑
TopologyBuilder builder = new TopologyBuilder();
// id、spout、并发数量
builder.setSpout(RandomSentenceSpout.class.getSimpleName(),
new RandomSentenceSpout(), 2);
builder.setBolt(SplitSentence.class.getSimpleName(),
new SplitSentence(), 5)
// 默认是一个 executor 一个 task
// 这里设置 5 个 executor,但是 task 设置了 10 个,相当于 每个 executor 2 个 task
.setNumTasks(10)
// 配置该 bolt 以何种方式从哪里获取数据
.shuffleGrouping(RandomSentenceSpout.class.getSimpleName());
builder.setBolt(WordCount.class.getSimpleName(),
new WordCount(), 5)
.setNumTasks(10)
// 配置按字段形式去 SplitSentence 中获取数据
// 相同的单词始终都会被发射到同一个 task 中去
.fieldsGrouping(SplitSentence.class.getSimpleName(), new Fields("word"));
// 上面代码配置有点像是主动获取数据,实际上是被动接受吗?
Config conf = new Config();
conf.setDebug(false);
if (args != null && args.length > 0) {
// 表示在命令行中运行的,需要提交的 storm 集群中去
conf.setNumWorkers(3);
StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.createTopology());
} else {
conf.setMaxTaskParallelism(3);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("word-count", conf, builder.createTopology());
TimeUnit.SECONDS.sleep(10);
cluster.shutdown();
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
运行后输出日志
RandomSentenceSpout sentence:snow white and the seven dwarfs
Thread-28-WordCount-executor[6 6]WordCount word:snow, count :2
Thread-22-WordCount-executor[7 7]WordCount word:the, count :2
Thread-18-WordCount-executor[8 8]WordCount word:and, count :2
Thread-28-WordCount-executor[6 6]WordCount word:white, count :2
Thread-18-WordCount-executor[8 8]WordCount word:dwarfs, count :2
Thread-28-WordCount-executor[6 6]WordCount word:seven, count :2
RandomSentenceSpout sentence:an apple a day keeps the doctor away
Thread-18-WordCount-executor[8 8]WordCount word:a, count :2
Thread-22-WordCount-executor[7 7]WordCount word:an, count :2
Thread-28-WordCount-executor[6 6]WordCount word:apple, count :2
Thread-22-WordCount-executor[7 7]WordCount word:day, count :2
Thread-28-WordCount-executor[6 6]WordCount word:keeps, count :2
Thread-22-WordCount-executor[7 7]WordCount word:the, count :3
Thread-28-WordCount-executor[6 6]WordCount word:doctor, count :2
Thread-28-WordCount-executor[6 6]WordCount word:away, count :2
RandomSentenceSpout sentence:an apple a day keeps the doctor away
Thread-18-WordCount-executor[8 8]WordCount word:a, count :3
Thread-22-WordCount-executor[7 7]WordCount word:an, count :3
Thread-28-WordCount-executor[6 6]WordCount word:apple, count :3
Thread-22-WordCount-executor[7 7]WordCount word:day, count :3
Thread-28-WordCount-executor[6 6]WordCount word:keeps, count :3
Thread-22-WordCount-executor[7 7]WordCount word:the, count :4
Thread-28-WordCount-executor[6 6]WordCount word:doctor, count :3
Thread-28-WordCount-executor[6 6]WordCount word:away, count :3
RandomSentenceSpout sentence:snow white and the seven dwarfs
Thread-18-WordCount-executor[8 8]WordCount word:and, count :3
Thread-28-WordCount-executor[6 6]WordCount word:snow, count :3
Thread-22-WordCount-executor[7 7]WordCount word:the, count :5
Thread-28-WordCount-executor[6 6]WordCount word:white, count :3
Thread-18-WordCount-executor[8 8]WordCount word:dwarfs, count :3
Thread-28-WordCount-executor[6 6]WordCount word:seven, count :3
RandomSentenceSpout sentence:the cow jumped over the moon
Thread-22-WordCount-executor[7 7]WordCount word:the, count :6
Thread-28-WordCount-executor[6 6]WordCount word:cow, count :2
Thread-28-WordCount-executor[6 6]WordCount word:jumped, count :2
Thread-22-WordCount-executor[7 7]WordCount word:over, count :2
Thread-22-WordCount-executor[7 7]WordCount word:the, count :7
Thread-22-WordCount-executor[7 7]WordCount word:moon, count :2
RandomSentenceSpout sentence:the cow jumped over the moon
Thread-22-WordCount-executor[7 7]WordCount word:the, count :8
Thread-28-WordCount-executor[6 6]WordCount word:cow, count :3
Thread-22-WordCount-executor[7 7]WordCount word:over, count :3
Thread-28-WordCount-executor[6 6]WordCount word:jumped, count :3
Thread-22-WordCount-executor[7 7]WordCount word:the, count :9
Thread-22-WordCount-executor[7 7]WordCount word:moon, count :3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
从上面的输出日志来看,Thread-28-WordCount-executor[6 6]
中每次都是处理 snow
,
这里需要注意下,应该这样说,snow 每次都在 28-6-6 上被处理,因为当单词种类大于 maxtask 配置的时候,
其实一个 task 会处理多个单词的,但是能保证相同的单词一定会落在同一个线程中
# 小结
作为 java 工程师,会一些大数据的基本技术就够了, 使用 storm 主要是用它成熟稳定的易于扩展的分布式系统特性。