# cardinality 去重算法以及每月销售品牌数量统计
cartinality metric 对每个 bucket 中的指定的 field 进行去重,取去重后的 count,类似于 count(distcint)
下面尝试不使用 cartinality 来实现每月销售品牌数量统计
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_date": {
"date_histogram": {
"field": "sold_date",
"interval": "month"
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand"
}
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
结果返回
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"group_by_date": {
"buckets": [
{
"key_as_string": "2016-05-01T00:00:00.000Z",
"key": 1462060800000,
"doc_count": 1,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "小米",
"doc_count": 1
}
]
}
},
{
"key_as_string": "2016-06-01T00:00:00.000Z",
"key": 1464739200000,
"doc_count": 0,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": []
}
},
{
"key_as_string": "2016-07-01T00:00:00.000Z",
"key": 1467331200000,
"doc_count": 1,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "TCL",
"doc_count": 1
}
]
}
},
{
"key_as_string": "2016-08-01T00:00:00.000Z",
"key": 1470009600000,
"doc_count": 1,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "TCL",
"doc_count": 1
}
]
}
},
{
"key_as_string": "2016-09-01T00:00:00.000Z",
"key": 1472688000000,
"doc_count": 0,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": []
}
},
{
"key_as_string": "2016-10-01T00:00:00.000Z",
"key": 1475280000000,
"doc_count": 1,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "长虹",
"doc_count": 1
}
]
}
},
{
"key_as_string": "2016-11-01T00:00:00.000Z",
"key": 1477958400000,
"doc_count": 2,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "长虹",
"doc_count": 2
}
]
}
},
{
"key_as_string": "2016-12-01T00:00:00.000Z",
"key": 1480550400000,
"doc_count": 0,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": []
}
},
{
"key_as_string": "2017-01-01T00:00:00.000Z",
"key": 1483228800000,
"doc_count": 1,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "三星",
"doc_count": 1
}
]
}
},
{
"key_as_string": "2017-02-01T00:00:00.000Z",
"key": 1485907200000,
"doc_count": 1,
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "小米",
"doc_count": 1
}
]
}
}
]
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
可以看到上面的结果,只能统计到每个月的品牌数量,而不是去重的
下面来实现去重后的品牌数量统计
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_date": {
"date_histogram": {
"field": "sold_date",
"interval": "month"
},
"aggs": {
"distinct_brand": {
"cardinality": {
"field": "brand"
}
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
返回结果
{
"took": 6,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"group_by_date": {
"buckets": [
{
"key_as_string": "2016-05-01T00:00:00.000Z",
"key": 1462060800000,
"doc_count": 1,
"distinct_brand": {
"value": 1
}
},
{
"key_as_string": "2016-06-01T00:00:00.000Z",
"key": 1464739200000,
"doc_count": 0,
"distinct_brand": {
"value": 0
}
},
{
"key_as_string": "2016-07-01T00:00:00.000Z",
"key": 1467331200000,
"doc_count": 1,
"distinct_brand": {
"value": 1
}
},
{
"key_as_string": "2016-08-01T00:00:00.000Z",
"key": 1470009600000,
"doc_count": 1,
"distinct_brand": {
"value": 1
}
},
{
"key_as_string": "2016-09-01T00:00:00.000Z",
"key": 1472688000000,
"doc_count": 0,
"distinct_brand": {
"value": 0
}
},
{
"key_as_string": "2016-10-01T00:00:00.000Z",
"key": 1475280000000,
"doc_count": 1,
"distinct_brand": {
"value": 1
}
},
{
"key_as_string": "2016-11-01T00:00:00.000Z",
"key": 1477958400000,
"doc_count": 2,
"distinct_brand": {
"value": 1
}
},
{
"key_as_string": "2016-12-01T00:00:00.000Z",
"key": 1480550400000,
"doc_count": 0,
"distinct_brand": {
"value": 0
}
},
{
"key_as_string": "2017-01-01T00:00:00.000Z",
"key": 1483228800000,
"doc_count": 1,
"distinct_brand": {
"value": 1
}
},
{
"key_as_string": "2017-02-01T00:00:00.000Z",
"key": 1485907200000,
"doc_count": 1,
"distinct_brand": {
"value": 1
}
}
]
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100